Inorganic Chemistry

Synthesis and Properties of Ph₂S(=N-(Ph₂)S=N)₂

Takayoshi Fujii,*,† Mihoko Kanno,† Mitsuo Hirata,† Teruyoshi Fujimori,‡ and Toshiaki Yoshimura*,‡

Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi, Narashino, Chiba 275-8575, Japan, and Department of Material Systems Engineering and Life Science, Faculty of Engineering, Toyama University, Gofuku, Toyama, Toyama 930-8555, Japan

Received September 7, 2005

A new type of λ^6 -sulfanenitrile with an SN triple bond at both ends, Ph₂S(=N-(Ph₂)S=N)₂ (**5**), was prepared in excellent yield from the one-pot synthesis of diphenylsulfimide (Ph₂SNH) with fluoro-(diphenyl)- λ^6 -sulfanenitrile (Ph₂FS=N) in the presence of 1,8diazabicyclo[5.4.0]undec-7-ene. Its molecular structure was determined by X-ray crystallographic analysis. Compound **5** reacted further with methyl triflate and trifluoromethanesulfonic anhydride to afford the corresponding bis-N-methylated and -N-sulfonated compounds.

Inorganic rings and chains based on skeletons of nitrogen, sulfur, and/or heteroatoms have attracted considerable attention because of their structures and reactivities. They also offer potential access to new materials with interesting and useful properties.^{1,2} Recently, we have described the synthesis of Ph₂(X)S=N-(Ph₂)S=N [X = LP (**3**), HN= (**4**), and O=] and established that fluoro(diphenyl)- λ^6 -sulfanenitrile (Ph₂FS=N) (**2**) is a potentially useful building block in S-N-S chemistry.³ Moreover, the crystal and electronic structures of **3** and **4** were elucidated by X-ray crystal-lographic analysis and quantum chemical calculations, respectively.⁴ In a further extension of these studies, we have

- (1) Labes, M. M.; Love, P.; Nichols, L. F. Chem. Rev. 1979, 79, 1-15.
- (2) (a) van de Grampel, J. C. Rev. Inorg. Chem. 1981, 3, 128. (b) Chivers, T. Chem. Rev. 1985, 85, 341-365. (c) Manners, I. Coord. Chem. Rev. 1994, 137, 109-129. (d) Manners, I. Angew. Chem., Int. Ed. Engl. 1996, 35, 1602-1621. (e) Chunechom, V.; Vidal, T. E.; Agams, H.; Turner, M. L. Angew. Chem., Int. Ed. 1998, 37, 1928-1930. (f) Chivers, T.; Gibson, M. P.; Parvez, M.; Vargas-Baca, I. Inorg. Chem. 2000, 39, 1697-1704. (g) McWilliams, A. R.; Gates, D. P.; Edwards, M.; Liablr-Sands, L. M.; Guzei, I.; Rheingold, A. L.; Manners, I. J. Am. Chem. Soc. 2000, 122, 8848-8855. (h) Burlingham, B. T.; Widlanski, T. S. J. Am. Chem. Soc. 2001, 122, 2937-2945. (i) McWilliams, A. R.; Dorn, H.; Manner, I. Top. Curr. Chem. 2002, 220, 141-167.
- (3) (a) Ohkubo, M.; Fujii, T.; Ono, S.; Morita, H.; Yoshimura, T.; Horn, E.; Sato, S. *Chem. Lett.* **1997**, 153–154. (b) Yoshimura, T.; Fujii, T.; Murotani, S.; Miyoshi, S.; Fujimori, T.; Ohkubo, M.; Ono, S.; Morita, H. *J. Organomet. Chem.* **2000**, *611*, 272–279.
- (4) Fujii, T.; Fujimori, T.; Miyoshi, S.; Murotani, S.; Ohkubo, M.; Yoshimura, T. *Heteroat. Chem.* **2001**, *12*, 263–268.

10.1021/ic051523g CCC: \$30.25 © 2005 American Chemical Society Published on Web 10/29/2005

examined the reaction of 2 with 3. Surprisingly, it was found that the reaction gives a new type of λ^6 -sulfanenitrile with an SN triple bond at both ends, Ph₂S(=N-(Ph₂)S≡N)₂ (5). We also have reported that the reaction of diphenylsulfimide (Ph₂SNH, 1) with 2 affords the corresponding 3.^{3a} These results prompted us to explore the possibility that 5 could be produced in one-pot synthesis via reaction of 1 with a large excess of 2. In this Communication, we report a highyielding and efficient method for the preparation and crystal structure determination of the title compound, as well as reactivities of the terminal nitrogens.

The reaction of **1** with an excess amount (5 equiv) of **2** in CH₃CN at 50 °C for 48 h, followed by simple acid extraction to remove side products and treatment with ionexchange resin IRA-410 (OH⁻ form), afforded **5** in 54% yield after purification by recrystallization from CH₂Cl₂– ether.⁵ The side products were mainly diphenylsulfoximide (Ph₂OS=NH)⁶ and diphenylsulfoxide (Ph₂S=O). The formation of **5** is obviously a multistep sequence (Scheme 1). The

Inorganic Chemistry, Vol. 44, No. 24, 2005 8653

^{*} To whom correspondence should be addressed. E-mail: t5fujii@ cit.nihon-u.ac.jp (T.F.), yosimura@eng.toyama-u.ac.jp (T.Y.).

[†] Nihon University.

[‡] Toyama University.

⁽⁵⁾ A solution of Ph₂SNH·H₂O (1; 0.219 g, 1.0 mmol), Ph₂FSN (1.095 g, 5.0 mmol), and DBU (230 µL, ca. 1.5 mmol) in 1.0 mL of CH₃CN at 50 °C was stirred for 18 h. The reaction mixture was cooled in an ice bath and then dissolved in 10 mL of 3% HCl, and the aqueous solution was extracted with benzene $(10 \times 5 \text{ mL})$ to remove side products such as Ph2OSNH and Ph2SO. To the aqueous layer was added saturated NaClO₄(aq) (0.5 mL). The mixture was stirred for 30 min and the resulting white precipitate filtered off and washed with water to provide $[Ph_2S(=N-(Ph_2)S=NH)_2][2ClO_4] (5 \cdot H_2^{2+})$ in almost pure quantitative yield. If necessary, the product was purified by recrystallization in CH₃CN-ether to give pure 5·H₂²⁺ as crystals. A solution of the residue $5 \cdot H_2^{2+}$ in methanol was passed through a column of Amberlite IRA-410 ion-exchange resin (strong base, OHform) followed by evaporation of the solvent to give 5 (dihydrate) in almost quantitative yield (0.631 g, 97%, relative to 1). Further purification by recrystallization from CH2Cl2-ether produced dihydrated **5** as crystals. For **5**·H₂²⁺: mp 228–229 °C (dec); ¹H NMR (400 MHz, CD₃CN) δ 7.53–7.62 (m, 12H), 7.75 (t, *J* = 7.5 Hz, 4H), 7.79 (t, J = 7.5 Hz, 2H), 7.89–7.91 (m, 4H), 7.93–7.96 (m, 8H); ¹³C NMR (100 MHz, CD₃CN) δ 128.6, 129.9, 131.6, 131.9, 136.9, 137.9, 138.4; IR (KBr) 3247, 1031, 992 cm⁻¹; Anal. Calcd for C₃₆H₃₂- $Cl_{N_4}O_4S_3$: C, 53.00; H, 3.95; N, 6.87. Found: C, 53.07; H, 3.97; N, 6.87. For **5**: mp 139–140 °C (dec, dihydrate); ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.30 (m, 12H), 7.36 (t, *J* = 7.90 Hz, 4H), 7.49 (t, *J* = 7.42 Hz, 4H), 7.86–7.91 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 126.7, 128.4, 128.6, 129.0, 130.6, 133.2, 138.7, 150.1; IR (KBr) 3373, 1313, 1170, 1157, 1045, 1017, 991 cm⁻¹. Anal. Calcd for C₃₆H₃₄N₄O₂S₃: C, 66.43; H, 5.27; N, 8.61. Found: C, 66.25; H, 5.24; N. 8.60.

Scheme 1

key step seems to involve NH deprotonation of $3 \cdot H^+$ followed by intermediary formation of $[Ph_2S=N-(Ph_2)S=N-(Ph_2)S\equiv N][F]$, which undergoes subsequently rapid decomposition, leading to $[Ph_2FS][Ph_2(N=)S=N-(Ph_2)S\equiv N]$. This intermediate further reacted with 2 and H_2O to give the corresponding 5 and $Ph_2S=O$. Thus, the addition of 1,8diazabicyclo[5.4.0]undec-7-ene (DBU; ca. 1.1 equiv relative to 1) as a base to avoid protonation of 1 and/or 3 shortened the reaction times and improved the yield of $Ph_2S(=N-(Ph_2)S\equiv N)_2$ (5) to 97% yield.

The crystal structure of 5 was determined by X-ray crystallographic analysis.⁷ The crystal lattice consists of **5** and water molecules. The distance between the oxygen and nitrogen atoms is 2.928(3) Å (d_{01} ···N1). This value is very close to the sum of the van der Waals radii (2.94 Å) of two elements⁸ and is indicative of the OH····N hydrogen bond. The X-ray structure of **5** indicates the following characteristic properties (Figure 1). 5 has an S-shaped C_s structure. The S(1)-N(1) bond length in 5 is 1.457(2) Å, which is very close to the SN triple bond length [1.435(2)-1.462 Å] of λ^6 -sulfanenitriles.^{4,9} The bridgings S(1)–N(2) and S(2)–N(2) bond lengths are 1.656(2) and 1.550(2) Å, respectively. These values lie between those of single and double bonds and are close to those of **3** and 4.⁴ The geometry around S(1) in **5** is a slightly distorted tetrahedral structure with two SN and two SC bonds. The bond angles of N(1)-S(1)-N(2)[123.47(10)°] and N1-S1-C [average 116.4(1)°] are larger but N(2)-S(1)-C [average 98.38(10)°] and C(1)-S(1)-C(2) [99.56(10)°] are smaller than the tetrahedral angle of 109.5°. The geometry around S(2) is also a slightly distorted tetrahedral structure with bond angles varying from

- (6) Ph₂OS=NH was easily formed by the hydrolysis of Ph₂FS≡N (2) in acidic conditions: Dong, T.; Fujii, T.; Murotani, S.; Ono, S.; Morita, H.; Shimasaki, C.; Yoshimura, T. Bull. Chem. Soc. Jpn. 2001, 74, 945–954.
- (7) Crystal data for **5**, $C_{36}H_{34}N_4O_2S_3$, with Mo K α ($\lambda = 0.710$ 69 Å) radiation: MW = 650.87, colorless plate, monoclinic, a = 26.830(2) Å, b = 8.968(2) Å, c = 17.906(2) Å, $\beta = 128.616(4)^\circ$, V = 3366.6(8) Å³, T = 296 K, space group C_2/c (No. 15), Z = 4, μ (Mo K α) = 2.58 cm⁻¹, 5304 reflections measured, 4910 unique ($R_{int} = 0.015$), R = 0.040, $R_w = 0.053$, GOF = 1.20.
- (8) Emsley, J. *The Elements*, 3rd ed.; Oxford University Press: Oxford, U.K., 1998.
- (9) (a) Yoshimura, T.; Hamada, K.; Imado, M.; Hamata, K.; Tomoda, K.; Fujii, T.; Morita, H.; Shimasaki, C.; Ono, S.; Tsukurimichi, E.; Furukawa, N.; Kimura, T. J. Org. Chem. 1997, 62, 3802–3803. (b) Yoshimura, T.; Ohkubo, M.; Fujii, T.; Kita, H.; Wakai, Y.; Ono, S.; Morita, H.; Shimasaki, C.; Horn, E. Bull Chem. Soc. Jpn. 1998, 71, 1629–1637. (c) Horn, E.; Dong, T.; Fujii, T.; Yoshimura, T.; Shimasaki, C. Z. Kristallogr.—New Cryst. Struct. 2000, 215, 357–356. (d) Fujii, T.; Itoh A.; Hamata, K.; Yoshimura, T. Tetrahedron Lett. 2001, 42, 5041–5043. (e) Fujii, T.; Asai, S.; Okada, T.; Hao, W.; Morita, H.; Yoshimura, T. Tetrahedron Lett. 2003, 44, 6203–6205.

 $101.44(10)^{\circ}$ to $121.8(2)^{\circ}$. The S(1)-N(2)-S(2) bond angle of $121.9(1)^{\circ}$ is indicative of sp² hybridization at the N(2) atom.

To explore the scope of the functionalization of terminal thiazyl nitrogens ($S^{VI}\equiv N$) in 5, the reaction of 5 with methyl triflate (TfOMe) was first examined (Scheme 2). When 5 reacted with 1 equiv of TfOMe in CH₂Cl₂ at 0 °C for 1 h, the corresponding [Ph₂(N \equiv)S-N=(Ph₂)S=N-(Ph₂)S=NMe][TfO] (6) was obtained in 98% yield.¹⁰ Interestingly, the reaction of 5 with excess of TfOMe under the same conditions as those above led to a straightforward formation of [Ph₂S(=N-(Ph₂)S=NMe)₂][2TfO] (7) in 98% yield.¹¹ This result indicates that the methylation of pre-

Figure 1. ORTEP drawing of **5** [50% probability thermal ellipsoids for all non-hydrogen atoms; the water molecule $(H_2O(1)^*)$ is omitted for clarity; the hydrogen bond is dashed]. Selected bond lenghs [Å] and angles [deg]: $S(1)-N(1) 1.457(2), S(1)-N(2) 1.656(2), S(1)-C(1) 1.808(2), S(1)-C(2) 1.804(2), S(2)-N(2) 1.550(2), S(2)-C(3) 1.781(2); N(1)-S(1)-N(2) 123.47(10), N(1)-S(1)-C(1) 115.8(1), N(1)-S(1)-C(2) 117.0(1), N(2)-S(1)-C(1) 98.73(10), N(2)-S(1)-C(2) 98.03(10), C(1)-S(1)-C(2) 99.56(10), N(2)-S(2)-N(2)^* 121.8(2), N(2)-S(2)-C(3) 112.94(10), N(2)-S(2)-C(3)^* 105.6(1).$

Scheme 2

COMMUNICATION

formed monocation derivative **6** is allowed despite the poor nucleophilic character of the terminal thiazyl nitrogen $(S^{VI}\equiv N)$ because of the strongly electron-withdrawing cationic sulfur atom. Further, the reaction of **5** with a 2.2 equimolar amount of trifluoromethanesulfonic anhydride (Tf_2O) in CH₂Cl₂ at ambient temperature for 1 h gave the corresponding bis-N-sulfonated compound $[Ph_2S(=N-(Ph_2)S=NTf_2)][2TfO]$ (**8**) in 70%.¹²

In summary, we have demonstrated the formation of a new type of λ^6 -sulfanenitrile **5** bearing the N=S^{VI}-N=S^{VI}=N-S^{VI}=N backbone, the molecular structure of which has been

determined. In addition, the nucleophilic character of both terminal nitrogen atoms in **5** can be recognized in the alkylation and sulfonation to yield the corresponding bisiminosulfonium salts. Our current efforts include application of reactivities of the terminal nitrogen in **5** to the preparation of macromolecules.

Acknowledgment. This work was partially supported by a Grant-in-Aid for Scientific Research (No. 16750030) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a grant from the High Technology Research Center, College of Industrial Technology, Nihon University.

Supporting Information Available: Tables of crystallographic data of **5** (PDF and CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC051523G

⁽¹⁰⁾ For 6: To a well-stirred solution of 5 (325 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added TfOMe (57 μL, 0.5 mmol). After stirring for 1 h, ether was added and a white precipitate was produced. The precipitate was filtered and washed with ether to give 6 (381 mg) in 98% yield. Further purification by recrystallization from CH₂Cl₂ – ether produced 6 as colorless crystals: mp 172–173 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.67 (s, 3H), 7.33–7.43 (m, 6H), 7.45–7.53 (m, 8H), 7.59–7.65 (m, 4H), 7.71–7.75 (m, 8H), 8.00 (d, *J* = 7.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 121.0 (q, *J*_{CF} = 319 Hz), 126.1, 128.0, 128.6, 128.8, 130.0, 130.2, 131.5, 134.4, 134.6, 134.9, 135.3, 148.7; IR (KBr) 1315, 1278, 1226, 1146, 1078, 1033, 979 cm⁻¹. Anal. Calcd for C₃₈H₃₃F₃N₄O₃S₄: C, 58.59; H, 4.27; N, 7.19. Found: C, 58.68; H, 4.33; N, 7.22.

⁽¹¹⁾ For 7: To a well-stirred solution of **5** (325 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added TfOMe (283 μ L, 2.5 mmol). After stirring for 1 h, ether was added and a white precipitate was produced. The precipitate was filtered and washed with ether to give **7** (464 mg) in 98% yield. Further purification by recrystallization from CH₃CN– ether produced **7** as a white powder: mp 193–194 °C; ¹H NMR (400 MHz, CD₃CN) δ 2.63 (s, 6H), 7.58–7.65 (m, 12H), 7.77–7.82 (m, 12H), 7.87–7.93 (m, 6H); ¹³C NMR (100 MHz, CD₃CN) δ 32.26, 121.95 (q, J_{CF} = 318 Hz), 129.31, 130.17, 131.56, 131.87, 131.93, 135.20, 136.96, 138.77; IR (KBr) 1262, 1226, 1162, 1070, 1031, 989 cm⁻¹. Anal. Calcd for C₄₀H₃₆F₆M₄O₆S₅: C, 50.94; H, 3.85; N, 5.94. Found: C, 50.87; H, 3.80; N, 6.02.

⁽¹²⁾ Compound 8 is hygroscopic and was therefore isolated by converting it into the corresponding perchlorate 8'. For 8': To a well-stirred solution of 5 (325 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) at ambient temperature was added Tf₂O (185 µL, 1.1 mmol). After stirring for 1 h, the solvent was removed under reduced pressure. The residue was dissolved in MeOH (5 mL), and a saturated NaClO₄(aq) (0.25 mL) was added and then extracted with CH₂Cl₂. After removal of the solvent, the residue was purified by crystallization from CH3CNether to afford [Ph₂S(=N-(Ph₂)S=NTf)₂][2ClO₄] (8'; 378 mg) in 70% yield: mp 223–224 °C; ¹H NMR (400 MHz, CD₃CN) δ 7.68 (t, J = 8.2 Hz, 4H), 7.77 (t, J = 8.2 Hz, 8H), 7.91-7.97 (m, 12H), 8.01-8.08 (m, 12H); ¹³C NMR (100 MHz, CD₃CN) δ 119.5 (q, J_{CF} = 319 Hz), 125.5, 129.9, 130.6, 131.4, 132.7, 133.0, 140.2, 141.7; IR (KBr) 1377, 1215, 1140, 1085, 1064, 1013, 989 cm⁻¹. Anal. Calcd for C₃₈H₃₀Cl₂F₆N₄O₁₂S₅: C, 42.26; H, 2.80; N, 5.19. Found: C, 42.08; H, 2.75; N, 5.17.